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J. Phys. A: Math. Gen. 13 (1980) 3083-3095. Printed in Great Britain 

An asymptotic theory of clad inhomogeneous planar 
waveguides: 11. Solutions of the eigenvalue equation 

J M Arnold 
Department of Electrical and Electronic Engineering, University of Nottingham, 
University Park, Nottingham, NG7 2RD, UK 

Received 24 January 1980 

Abstract. The eigenvalue problem for the differential equation describing scalar waves in a 
clad inhomogeneous planar waveguide is solved using an asymptotic formulation derived in 
the preceding paper. The results of this earlier paper are summarised, and a method 
proposed for the extraction of the eigenvalue from the implicit eigenvalue equation. 
Although in general these calculations are conveniently carried out by numerical methods, 
approximate closed-form expressions can be obtained for the eigenvalue and these are 
given for all the asymptotic regimes of interest. 

1. Introduction 

This paper is a continuation of the preceding one (Arnold 1980a, hereafter referred to 
as I) in which the determination to a2Z'asymptotic orders of the eigenfunctions and 
eigenvalue equations of scalar waves in certain planar waveguiding environments was 
carried out. The waveguides in question are transversely inhomogeneous with 
symmetric inhomogeneity profiles, embedded in symmetric homogeneous cladding 
media. The problem to be considered here is that of the solution of the eigenvalue 
equations derived in I, to describe the entire discrete part of the spectrum. 

Section 2 contains a summary of all the relevant expressions derived in I, and 0 3 is 
devoted to the techniques for solving the eigenvalue equations, along with approximate 
expressions derived in various asymptotic regimes. These explicit expressions are 
obtained by retaining only the leadingiorder terms of asymptotic series as the large 
parameter V becomes infinite. It should be emphasised here that this low order of 
approximation is not an essential restriction; if more terms are retained then the 
complexity of the resulting expressions increases greatly, without increasing 
significantly their physical content. For numerical accuracy, however, as many 
asymptotic terms as desired may be retained and all such terms can be generated from 
the theory described here and in I. 

The resulting formulae for the eigenvalues are exhibited as being asymptotic to their 
zero-order WKB values, which latter neglect the effects of the cladding boundaries; 
corrections are given both for higher-order WKB effects (Froman 1970) and effects due 
to the finite boundary. The zero-order WKB values are implicitly defined, and can be 
rendered explicit by a variety of devices. The method considered here involves 
regarding the profile function f' as a small perturbation on an ideal quadratic function 
of the transverse coordinate, but others are possible. 

0305-4470/80/093083 + 13$01.50 @ 1980 The Institute of Physics 3083 
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2. Summary of asymptotic expressions 

In this section the necessary results from I will be summarised. 
The differential equation is 

d’+/dx’-(V’f’- U’)+=O (2 . la)  

subject to boundary conditions 

(2.lb) 

where f’ is any suitable analytic function such that f = 0 at x = 0 and f = 1 at x = 1. In 
addition, in I f  was assumed to be symmetrical about x = O( f(x) = -f(-x)) although this 
restriction is not essential; it simplifies some of the calculations. Acceptable forms for f 
(or f’) include: 

M M 

j = O  j = O  
f = x  1 ajx2j C a j = l ,  aO=  1 (2.2a) 

and 

(2.2b) 

The parameter W is given by 

W” v’- U’. (2.3) 

It is further assumed that V’f’ - U 2  has only two zeros, x1 and xz,(such that x2 = -xl 

F’=f’-f; ( 2 . 4 ~ )  

f;= u2/v2. (2.4b) 

and x2 > 0), in -1 < x < 1 for U’S V’. For convenience we also write 

The solution + of (2.1) then has various representations. 

2.1. Evanescent WKB 

+ = (d~/dx>-’/’(Al eCV‘+A2 e”‘) 
where 

and r is a contour in the complex x’-plane which starts and finishes at x after passing 
once around the turning point x’  = x2 in a clockwise direction. The constants A1 and AZ 
are 

(2.8a) A ,  = A ;  = AY’ cos(vr/2) 

=A? =A? sin(vr/2) 

A2 = A; = -2A: sin( vr/2) 

= A; = 2A$ cos(vr/2) 

(2.8b) 

( 2 . 8 ~ )  

(2 .8d)  
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where the superscripts refer to solutions with even or odd symmetry about x = 0. In 
(2.8), v is given by 

where ro encircles the two turning points x = x1 and x = x2 in a positive (counter- 
clockwise) sense, and w is a solution of (2.6). The values of the constants A:, A:, A?, 
A$ are given in I, and only the ratios 

( 2 . 1 0 ~ )  

(2.10b) 

are required to determine the eigenvalues. 

for any asymptotic order of approximation to w from (2.6). 
The above expressions apply for x > x2, and are exact, in the sense that they are valid 

The asymptotic solution of (2.6) is 

1 1 dF2 1 dF2 
2 V 2 F  dx 4F2 dx 4F2 dx 

w - F - - [" (- -) + (- -) ] + O( V-") (2.11) 

and higher-order terms follow by iteration of (2.6). 
Expressions for x < x1 are obtained by straightforward symmetry considerations. 

2.2. Oscillatory WKB 

4 = (dq/dx)-1/2(B1 e-iv' + B 2  eiv') (2.12) 

for x1 < x < x2, where 

(&!?)2=u2=-F +- 1 (dq)"' - - d2 (dq)-'" - 
V2 dx dx2 dx 

q = $  U dx'. 

The constants are 

B " = A ~  

BO = A?. 

The asymptotic solution of (2.13) is 

U - (--F2)'/' + 1 dF2 1 dF2 

(2.13) 

(2.14) 

(2.15 a )  

(2.15 b) 

(2.15 c) 

(2.15d) 

( 2 . 1 6 ~ )  

(2.16 b) 

(2.17) 
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2.3. Near caustics 

4 = (d7/dx)-1/2[C1 Ai( V2l37) + CZ Bi( V2/3r)1 

where 
(2.18) 

(2.19) 

( 2 . 2 0 ~ )  

(2.2 0 b) 

(2.20c) 

(2.20d) 

(2.21 a) 

(2.21 b) 

(2.21c) 

(2.2 1 d )  

The asymptotic solution of (2.19) is 

r = r r + r 6 / V 2  (2.22) 
1 l l d  1 d F 2 2  

$T’3/2 - lx: F dx’ + lx - [ - - (- 
2 V  x,F 4 dx’ F2 dx’ 3 1:; F d x ”  

(2.23) 
for x - x2, where 

2.4. Uniform (-1 s x 6 1 )  

4 = (dS/dx)-”2[@l cos( v7r/2) - @2 sin( v ~ / 2 ) ]  

where 

(2.24) 

(2.25) 

( 2 . 2 6 ~ )  

(2.26 b )  

(2.27) 

(2.28) 

vc; = 2( v + 6) (2.29) 
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and and are linearly independent solutions of 

d2@/d5’ - V’(5’ - [E)@ = 0. (2.30) 

Integral representations for and are given in I, 0 3, equations (3.35)-(3.38). 

2.5. Degenerate caustics 

In general, (2.28) cannot be solved explicitly. However, when U’- O( V), f g  is small 
and an asymptotic solution can be constructed explicitly. It is 

where 

(2.31) 

(2 .32~)  

(2.32 b)’ 

and x, x’ - 0(1) as V + CO, being chosen so that the second integral in (2.3 1) converges 
at x’=O. 

Depending on the locations of the two caustics, there is a variety of eigenvalue 
equations. 

(i) Generic form 
The eigenvalue equation always takes the form 

V 1 28 
2 T  

-- 2Tiio w d x = q + - + -  (2.33) 

where q is a non-negative integer; the expression for is dependent on the locations of 
the caustics. ro encircles the two turning points counter-clockwise. 

(ii) Caustics well separated from each other and the boundaries 

exp(-VIrwdx‘>l x = l  (2.34) 
1 (w’” dw-’/’/dx - VW + W) 

‘I‘ dw-‘/’/dx + Vw + W) 
e = tan-’[a (w 

with w defined by (2.6), at x = 1 
(iii) Caustic near a boundary 

Ai’( V213r) + V-’13 W” Ai( V213 r )  
Bi’( V2137) + V213 W” Bi( V2I3r) 

) x = l  (2.35) e =tan-‘( 

where 

and 7 is defined by (2.19), at x = 1. 
(iv) Degenerate caustics 

(2.36) 

(2 .37~)  

(2.3 7 6 )  
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where the prime on the Q, functions signifies differentiation with respect to 6, 

(2.38) 

evaluated at x = 1, and 6 is a solution of (2.28), given asymptotically by (2.31). The 
various Q, functions are defined in I, § 3. 

3. Solution of the eigenvalue equation 

The generic equation (2.33) is the eigenvalue equation for all configurations of caustics 
and is accurate to all asymptotic orders. Intepretations of this equation in terms of 
better known but less accurate expressions are also possible. If only the leading-order 
term in w is retained from (2.1 l), and 8 is neglected, (2.33) reduces to 

“ 5  (f2-f8)”* dx - q + $  
27ri ro (3.1) 

which is the leading-order WKB quantisation condition (the Bohr-Sommerfeld 
condition) in contour integral form. Still neglecting 8, but retaining all terms in w, (2.33) 
becomes 

“f wdx-q+$  
27ri ,, 

which is Dunham’s condition (Dunham 1932), expressed slightly differently. Thus, 8 
represents the effect of finite boundaries, and the higher-order terms in w correct the 
WKB formulae. 

The generic equation (2.33) can be solved formally as follows. Let 

and consider 

-” f w dx = v +; 
27ri ro (3.4) 

which is identical to (2.9). The left-hand side of (3.4) depends on the eigenvalue 
implicitly throughfi (cf (2.4) and (2.1 1)). Hence equation (3.4) implicitly definesf; as a 
function of U, which we suppose to be obtainable by inversion of (3.4). This then 
permits f;, which appears explicitly in 8, to be expressed in terms of Y. Hence, (3.3) 
acquires the form 

v = q + (2/+3(v) .  (3.5) 

Because of the transcendental functions appearing in the definitions of 8, (2.34), (2.35) 
and (2.37), it is not possible to obtain simple asymptotic expansions for v. In general 
(3.5) is solved by a convenient numerical scheme such as Newton’s method. The first 
iteration of this procedure still yields an analytic expression for v, and hence f;, which 
can be used to study the various corrections to WKB which transpire. 
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Before giving these expressions, it is necessary to consider the inversion of (3 .4 ) ,  
which can be done asymptotically, as follows. Equation (3 .4 )  can be rewritten as 

‘f wdx=-  -P 
21ri ro 2 

where 
p=2(v+$)/V 

(3.6) 

(3 .7 )  
and is to be regarded as an arbitrary parameter. Let fi be expanded asymptotically as 

cc 
fg- AjV-” 

j = O  

where the {Aj} are functions of p to be determined. The integrand in (3 .6 )  is a solution of 
(2.6), i.e. 

Here the higher-order terms off: has been used as counterterms (cf I). An asymptotic 
expansion for w results from iterating (3 .9 ) :  

(3 .10 )  

and higher-order terms follow after further iteration, with 

Fi =f’-ho. (3 .11 )  

Taking the square root of (3 .10 )  yields 

(3 .12 )  

Equation (3 .12 )  is now integrated over a contour surrounding the two turning points, 
and powers of V-’ matched on either side of (3 .6 )  to give 

( 3 . 1 3 4  

(3 .13b)  

and similar expressions for higher-order coefficients. (3 .13  a )  defines ho, (3 .13  b )  
defines A I  in terms of Ao, and so on. 

( 3 . 1 3 ~ )  is still implicit for Ao; one method of rendering it explicit is to take f 2  to be 
quasi-quadratic : 

f 2 =  x 2 + q  (3 .14 )  
where g is an analytic function of x 2  such that g = 0 at x = 0 and x = 1 (for example 

g = x2(1  -2) (3 .15)  
is suitable), and E is a small number. It is then possible, if E is small enough, to deform 
the contour ro slightly so that the expansion of the integrand of ( 3 . 1 3 ~ )  in powers of E is 
absolutely and uniformly convergent on the new contour (rb say). Hence the left-hand 
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side of ( 3 . 1 3 ~ )  is an analytic function of E in a neighbourhood of E = 0, and the Lagrange 
implicit function theorem (Whitaker and Watson 1965) may be used to obtain A. as a 
convergent series in powers of E .  The result is 

Ao=p+-$, E (x2-p)-1/2g dx+0(e2)  
2 ~ 1  ro 

(3.16) 

for the leading-order terms. The radius of convergence is set by the requirement that 
leg( < 1x2 - pI everywhere within and on rb. This completes the inversion of (3.3), since 
f :  is given explicitly by (3.8), (3.13), (3.16) and (3.7). The integral in (3.16) and those 
appearing in higher-order terms are very easy to calculate. For example, with g ghen 
by (3.15), we have 

1 1/2 2 (x’ - p)-1’2g dx = 7 f (x2 - p)- x (1 - x’) dx 
1 

2 ~ 1  r; 
i 

=-f 1 x(1-x2) 2 cj(-%) dx 2 ~ 1  rb j = O  X 

- _  - c1p-c2p2 

=;p-;p2 (3.17) 

where the {ci} are the coefficients in the binomial expansion of (1 + t)-l’’ in powers of t. 
We remark here that for practical purposes I‘b may generally be taken to be a circle 
centred at x = 0, with radius slightly, but sufficiently, greater than unity. 

The above analysis leads to the conjecture that, if g is a polynomial in x ’ ,  then the 
coefficients of powers of E in the expansion for A. are polynomials in p, a conjecture 
which it is straightforward to verify. 

It is now possible to proceed with the approximate solution of the eigenvalue 
equation, considering each caustic configuration in turn. 

3.1. Caustics well separated from each other and from the boundaries 

Here we require 

lim f g  = constant z o or I. (3.18) 

The eigenvalue equation is (2.33) with 8 given by (2.34). Under the assumption implied 
by (3.18), 8 is exponentially small. Therefore, a first approximation for v would be, 
from (3.9,  

v - 4  (3.19) 

and hence, from (3.7). 

V+oO 

p--2(q+4)/V=po. (3.20) 

Using (3.16), with (3.20), gives 

and so, by (3.8), 
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Equation (3.22) is no more than the WKB approximation (to lowest order as 
V + CO). To improve it, we use this value off: to calculate an approximation for 8 using 
(2.34). If only the leading-order term in w is retained, the result is, for large V, 

-1 1 8 -I( 1 --(1 8 V  - Ao)3/2) exp( -2 V I ,  ( f 2 -  Ao)’/’ dx’) 
2 Fl 

(3.23) 

(3.24) 

and A. is given approximately by (3.21). The parameter x o  is the zero of the integrand. 
Using (3.14), a perturbation series in powers of E for the argument of the exponential in 
(3.21) can be constructed, having the form 

1 1 

(fZ-Ao)1/2dx- ( x ’ - p ~ ) d x + ~  1’ x 2 ( g - p l ) ( x 2 - p o ) - 1 / 2 d x + O ( E 2 )  (3.25) I, P Y 2  2 &/2  

where the fact that, on the first iteration, 

A0 - P O +  E P 1 +  O(E2) 

has been used; p1 is the coefficient of E in (3.21). 
An examination of (3.23) reveals that the regimes A. - 1 and A. > 1 must be avoided 

to keep 8 small and real. This mathematical condition is equivalent to the physical 
requirement that V >  V, (where V, is the normalised cut-off frequency for the 4th 
mode), to ensure that U’< V’. Avoidance of this regime is secured by the 
governing condition (3.18). 

The approximation (3.23) may now be regarded as an initial estimate for 8 in 
anaZyticaZ form. It may be used in (3.5) to obtain a new estimate for v, which is then used 
in (3.4). Subsequent inversion of (3.4) leads to a new value of Ao, and hence f &  and so 
on. 

It will be noted that no higher-order asymptotic terms of w were used to obtain 
(3.23), even though these are available from I. This is not a restriction, however, since 
(3.23) is to be regarded as an initial estimate only, for subsequent numerical iteration. 
The eigenvalue U’(= V’fz) does not have a convenient representation in analytical 
form when higher-order terms are included, and is regarded merely as a numerical 
parameter in I. 

Having thus obtained a first approximation for 8, (3.23), this can be used in (3.3) and 
the resulting expression (3.4) solved for f t  to give 

1 

f; = -p U’ - /io+- 2 (1 --(1- 8 V  Ao) ”’)-’ exp( -2 v J,, (f’- 
dx) 

(3.26) 
TVC~ Fi 

where 

(3.27) 

and A. is the leading-order WKB approximation obtained as a solution of (3.1): 

1 q + i  s, (f2-A0)l/’  dx = -- V ’  
(3.28) 

The parameter xo is the positive zero of the integrand in (3.26), and rb is a deformation 



3092 J M Arnold 

of Fo which passes around the two pointsf’ = A. in a positive direction. Equation (3.26) 
corrects the leading-order WKB approximation to fi for the presence of finite 
boundaries; further corrections are obtained by computing the higher-order 
coefficients {Aj: j 2 l} from (3.13) and using them in the asymptotic expansion (3.8). 

3.2. Caustics near boundaries 

In the limit U + V, we have W = 0, fi = 1, and the assumptions of the previous section 
do not apply. This condition corresponds to the approach to cut-off of the waveguide 
mode under consideration, and this regime requires different approximations for the 
eigenvalue, which are provided by the representation (2.18) of the eigenfunction (b in 
terms of Airy functions. The associated representation for 8 is (2.35). 

The same general procedure as in 8 3.1 above is used. However, in addition, we 
introduce a hypothesis to measure the proximity of U to its limiting value V. By 
estimating the variable 7, assuming that W’/ V’ is small and that f’ is locally a quadratic 
function of x near x = 1, it transpires that, at x = 1, 

(3.29) 

where F1 is given by (3.22). Now when the argument of the Airy functions is sufficiently 
large, these functions may be replaced by their asymptotic expansions, which contain 
exponentials, and the eigenvalue equation reduces to the form already considered in 
§ 3.1 above. On the other hand, for W 2  sufficiently small, the argument of these 
functions is not large enough to justify asymptotic expansion and they must be retained 
to ensure numerical accuracy. This situation arises if the modulus of the argument 
V2137 is less than, or nearly equal to, unity; otherwise the large-argument expansions 
may be used. From (3.29) this happens when 

wz/ v2 v - 2 ~ 3  F1 213 (3.30) 

and this inequality may be regarded as specifying the required smallness of W to justify 
special treatment; it may be observed that (3.30) implies that W’/V’ is O(V-‘13) as 
V -+ 00, a condition which was used in our earlier work (Arnold 1980~) .  

T - F;’13 ( W’/ V’) + 0[( W’/ V’))’] 

Subsequent analysis similar to 4 3.1 above leads to 

U’/ V’ - ho + (4/7rVal) tan-’( T )  (3.31) 

where 

Ai’ (V2/3~)  + V”’(1- AO)~’’ Ai( V 2 ’ 3 ~ )  
Si’( V2137) + V1l3(l - A o ) ~ ”  Bi( V2137) 

T = -  

213 

T - (i lxl ( f 2  - ho) ‘I2 dx) 

and A. is the solution of 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

which is again the leading-order WKB approximation. The parameter xo in (3.34) is the 
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zero of the integrand. An error term O( V-5’3) may be added to the right of (3 .31)  to 
complete it formally, as this is the estimated magnitude of the neglected terms subject to 
(3 .30) .  

An explicit solution of (3 .35)  can be effected in this case without further assumptions 
about f, using (3 .30) .  Since in this regime Ao+ 1 as V + w ,  the integrand on the 
left-hand side of (3 .35)  is expanded in powers of 1 - h o ( = A &  say) and the resulting 
series inverted. The result of this operation is 

Ao-  l - A / a l  V (3 .36)  

where 

A = V - 2(q  + ;)a 0’ (3 .37a)  

(3 .37b)  

a1 =- f (f’- l)-”’ dx. (3 .37c )  
27ri rb 

The particular form of (3 .37)  is chosen because for quadratic f’(f2 = x2), a. = a1 = 1 ; rb 
is a contour surrounding x = * l ,  a deformation of the original ro. 

Using (3 .36) ,  (3 .8 )  and (2 .3 )  in (3 .30)  it transpires that 

A s  C U ~ F : / ~ V - ~ / ~  

i.e. using ( 3 . 3 7 ~ )  

( 3 . 3 8 ~ )  

(3 .38b)  

which sets an upper limit on the value of V for which this type of representation is 
necessary. 

The difference between the expressions given here and those of previous work 
(Arnold 1980b) (apart from some trivial notation changes such as different meanings 
for ,lo and A I )  is that here the attempt to obtain a formal expansion for the eigenvalue 
U’ has been abandoned. Instead, we have chosen to exhibit the parameter U’/ V2 as a 
perturbation on its WKB value ho, a more convenient and instructive representation. In 
particular, comparison of the results of this part with those of § 3.1,  which is possible 
directly, indicates that the correction to WKB is relatively large in the present case, 
being O( V-’) here in comparison with an exponentially small amount in § 3.1 .  This is a 
direct consequence of the proximity of the caustic to the boundary. 

A further quantity of interest in waveguide theory is the (normalised) cut-off 
frequency, V,, of the mode indexed by the integer q. The cut-off condition defines the 
minimum value of V for which unattenuated propagation of the mode can occur; it 
corresponds to W 2  = 0, since guided propagation occurs only if W is real and positive 
(W is the normalised transverse wavenumber in the homogeneous cladding for a 
transverse dependence of the form eCWx). Thus, to obtain V,, W is set to zero and the 
eigenvalue equation solved for the appropriate value of V. 

In this case considerable simplification of the calculation results from setting W = 0. 
After some straightforward algebra the result is 

(3 .39)  
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A, =[2(q +$)-$]aO' (3.40) 

--- (f2- 1)ll2 dx 2 2ri (3.41) 

( 3 . 4 2 ~ )  

(3.426) 

The term O(&') in (3.39) can also be quite easily calculated. The corresponding result 
from the leading-order WKB eigenvalue equation (3.35) would be 

v, - 2(q ++)a;' (3.43) 

and again it is possible to observe significant corrections to the WKB result by 
comparing (3.43) with (3.39)-(3.42). 

3.3. Caustics close to each other and to the origin 

This case can be solved directly, using the large-argument asymptotic expansions for the 
confluent hypergeometric functions in (2.37), along with the explicit solution for ( as a 
function of x, given in 0 3 of I. However, for all practical purposes the contribution 
made by 8 to (2.33) is extremely small due to the exponential nature of a;, ay, @ Z  and 
@; near the boundary, and for large V it may initially be neglected completely. The 
eigenvalue problem then reduces to a consideration of the WKB equation to infinite 
order: 

w dx-q+i .  
2 r i  ro 

(3.44) 

On introducing the amutz employed in I 3 of I, 

f: - or v-') (3.45) 

as V + w ,  solution of (3 .44  is equivalent to that of the evanescent wave theory 
quantisstion prQblem (d Choudhary and Felsen 1978, Arnold and Felsen 1980). The 
first few asymptotic terms of the solution to (3.44) are 

(3.46) 

(3.47b) 

With f; calculated according to these expressions, an estimate for t9 can be obtained 

The fact that the leading-order term 
from (2.37), q replaced by v according to (3.3), f; recalculated, and so on. 

u2/v2 - 2(q +4)/ v (3.48) 

is independent of the precise details of the function f has a physical interpretation; 
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because both caustics are close to the origin, the propagation behaviour is determined 
mainly by the local variation off’ near x = 0, which is (locally) quadratic by hypothesis. 

This completes the analysis of the eigenvalue equation. 

4. Conclusions 

Methods of solving the eigenvalue equations arising in I have been considered for all the 
asymptotic (V + 00) regimes of interest for guided waves in symmetric inhomogeneous 
media immersed in homogeneous claddings. 

Because of the transcendental functions which appear in these equations, which 
must be retained to preserve uniformity, simple expressions in closed form for the 
eigenvalue cannot be obtained to arbitrary precision. Nevertheless, leading-order 
approximations in closed form are readily available, and subsequent higher orders of 
approximation follow by iteration. It should be emphasised that this restriction on 
closed-form expressions is not a limitation in principle, but is simply a recognition of the 
complexity of the expressions involved. Since these expressions would have to be 
evaluated numerically anyway (an operation which would be extremely tedious because 
of the complexity of the expressions), it seems desirable to solve that part of the 
eigenvalue problem involving transcendental functions (equation (3.5)) directly by 
numerical means. The separation of the eigenvalue equation into ‘asymptotic’ and 
‘transcendental’ parts, equations (3.4) and (3.3) respectively, greatly facilitates this 
procedure. The eigenvalue equation can be said to be solved to given order in V if all 
the terms up to that order are retained in any function defined by an asymptotic series, 
and the numerical solution of the resulting approximate eigenvalue equation is carried 
out to arbitrary numerical precision. We have chosen not to give the higher-order 
expressions because of their algebraic complexity; they are calculated numerically with 
no difficulty. 

The restriction to symmetric profile functions f and symmetric boundary conditions 
is inessential; it has been considered desirable in order not to submerge the principles of 
this method in a welter of calculations. The method is well suited to the treatment of 
asymmetrical waveguides once the basic principles are understood, and the extension to 
asymmetrical profiles is to be considered subsequently. 
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